English

If tanx = ba, then find the value of a+ba-b+a-ba+b - Mathematics

Advertisements
Advertisements

Question

If tanx = `b/a`, then find the value of `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))`

Sum

Solution

Given that: tan x = `b/a`

`sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b)) = sqrt(a + b)/sqrt(a - b) + sqrt(a - b)/sqrt(a + b)`

= `(a + b + a - b)/sqrt((a - b)(a + b))`

= `(2a)/sqrt(a^2 - b^2)`

= `(2a)/(asqrt(1 - b^2/a^2))`

= `2/sqrt(1 - tan^2x)`

= `2/sqrt(1 - (sin^2x)/(cos^2x))`

= `2/(sqrt(cos^2x - sin^2x)/cosx)`

= `(2cosx)/sqrt(cos2x)`  ......`[because cos^2x - sin^2x = cos2x]`

Hence, `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b)) = (2cosx)/sqrt(cos2x)`.

shaalaa.com
Trigonometric Functions
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 53]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 5 | Page 53
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×