English

Prove that cosθ cos θ2-cos3θcos 9θ2 = sin 7θ sin 8θ. [Hint: Express L.H.S. = 12[2cosθcos θ2-2cos3θcos 9θ2] - Mathematics

Advertisements
Advertisements

Question

Prove that cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2` = sin 7θ sin 8θ.

[Hint: Express L.H.S. = `1/2[2costheta cos  theta/2 - 2 cos 3theta cos  (9theta)/2]`

Theorem

Solution

L.H.S. cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2`

= `1/2[2 cos theta cos  theta/2] - 1/2[2 cos 3theta cos  (9theta)/2]`

= `1/2[cos(theta + theta/2) + cos(theta - theta/2)] - 1/2[cos(3theta + (9theta)/2) + cos(3theta - (9theta)/2)]`

= `1/2[cos  (3theta)/2 + cos  theta/2 - cos  (15theta)/2 - cos((-3theta)/2)]`

= `1/2[cos  (3theta)/2 + cos  theta/2 - cos  (15theta)/2 - cos  (3theta)/2]`  ......[∵ cos (-θ) = cos θ]

= `1/2[cos  theta/2 - cos  (15theta)/2]`

= `1/2[-2sin(theta/2 + (15theta)/2).sin(theta/2 - (15theta)/2)]`

= -sin 8θ sin (-7θ)

= sin 7θ sin 8θ   .......[∵ sin (-θ) = -sin θ]

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
Trigonometric Functions
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 53]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 6 | Page 53
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×