English

If cos(α + β) = 45 and sin(α – β) = 513, where α lie between 0 and π4, find the value of tan2α.[Hint: Express tan2α as tan(α + β + α – β)] - Mathematics

Advertisements
Advertisements

Question

If cos(α + β) = `4/5` and sin(α – β) = `5/13`, where α lie between 0 and `pi/4`, find the value of tan2α.
[Hint: Express tan2α as tan(α + β + α – β)]

Theorem

Solution

Given that: cos(α + β) = `4/5`

∴ tan(α + β) = `3/4`


And sin(α – β) = `5/13`

∴ tan(α – β) = `5/12`


Now tan 2α = tan[α + β + α – β]

= tan[(α + β) + (α – β)]

= `(tan(alpha + beta) + tan(alpha - beta))/(1 - tan(alpha + beta).tan(alpha - beta))`

= `(3/4 + 5/12)/(1 - 3/4 xx 5/12)`

= `((9 + 5)/12)/((48 - 15)/48)`

= `14/12 xx 48/33`

= `56/33`

Hence, tan 2α = `56/33`.

shaalaa.com
Trigonometric Functions
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 52]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 4 | Page 52
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×