English

Cos2θ cos2Φ + sin2(θ – Φ) – sin2(θ + Φ) is equal to ______. - Mathematics

Advertisements
Advertisements

Question

cos2θ cos2Φ + sin2(θ – Φ) – sin2(θ + Φ) is equal to ______.

Options

  • sin2(θ + Φ)

  • cos2(θ + Φ)

  • sin2(θ – Φ)

  • cos2(θ – Φ)

MCQ
Fill in the Blanks

Solution

cos2θ cos2Φ + sin2(θ – Φ) – sin2(θ + Φ) is equal to cos2(θ + Φ).

Explanation:

Given that: cos2θ cos2Φ + sin2(θ – Φ) – sin2(θ + Φ)

cos2θ cos2Φ + sin2(θ – Φ) – sin2(θ + Φ)

= cos2θ cos2Φ + sin(θ – Φ + θ + Φ).sin(θ – Φ – q – Φ)  .......[∵ sin2A – sin2B = sin(A + B).sin(A – B)]

= cos2θ cos2Φ + sin2θ.sin(–2Φ)

= cos2θ cos2Φ – sin2θ sin2Φ   .......[∵ sin(–θ) = –sin θ]

= cos(2θ + 2Φ) = cos2(θ + Φ)

shaalaa.com
Trigonometric Functions
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 57]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 45 | Page 57
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×