English

If m sinθ = n sin(θ + 2α), then prove that tan(θ + α)cotα = m+nm-n [Hint: Express sin(θ+2α)sinθ=mn and apply componendo and dividendo] - Mathematics

Advertisements
Advertisements

Question

If m sinθ = n sin(θ + 2α), then prove that tan(θ + α)cotα = `(m + n)/(m - n)`

[Hint: Express `(sin(theta + 2alpha))/sintheta = m/n` and apply componendo and dividendo]

Theorem

Solution

Given that: m sinθ = n sin(θ + 2α)

⇒ `(sin(theta + 2alpha))/sintheta = m/n`

Using componendo and dividendo theorem, we get,

⇒ `(sin(theta + 2alpha) + sintheta)/(sin(theta + 2alpha) - sintheta) = (m + n)/(m - n)`

⇒ `(2sin((theta + 2alpha + theta)/2).cos((theta + 2alpha - theta)/2))/(2cos((theta + 2alpha + theta)/2).sin((theta + 2alpha - theta)/2)) = (m + n)/(m - n)`    .......`[(because sinA + sinB = 2sin  (A + B)/2 . cos  (A - B)/2),(sinA - sinB = 2cos  (A + B)/2 . sin  (A - B)/2)]`

⇒ `(sin(theta + alpha).cosalpha)/(cos(theta + alpha).sinalpha) = (m + n)/(m - n)`

⇒ `tan(theta + alpha)cotalpha = (m + n)/(m - n)`

Hence proved.

shaalaa.com
Trigonometric Functions
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 52]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 3 | Page 52
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×