Advertisements
Advertisements
Question
Prove that `(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
Solution
L.H.S. `(tanA + secA - 1)/(tanA - secA + 1)`
= `(tan A + (secA - 1))/(tanA - (secA - 1))`
= `([tan A + (secA - 1)][tanA + (secA - 1)])/([tanA - (sec A - 1)][tanA + (secA - 1)]` ......[Rationalizing the denominator]
= `[tan A + (sec A - 1)]^2/(tan^2A - (secA - 1)^2`
= `(tan^2A + (secA - 1)^2 + 2tanA(secA - 1))/(tan^2A - (sec^2A + 1 - 2secA))`
= `(tan^2 + sec^2A + 1 - 2secA + 2tanA secA - 2tanA)/(tan^2A - sec^2A - 1 + 2secA)`
= `(sec^2A + sec^2A - 2secA + 2tanAsecA - 2tanA)/(-1 - 1 + 2secA)`
= `(2sec^2A - 2secA - 2secA + 2tanAsecA - 2tanA)/(2secA - 2)`
= `(sec^2A - secA + secA + secA tanA - tanA)/(secA - 1)`
= `(secA(secA - 1) + tanA(secA- 1))/(secA- 1)`
= `((secA - 1)(secA+ tanA))/((secA - 1))`
= sec A + tan A
= `1/cosA + sinA/cosA`
= `(1 + sinA)/cosA`
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `(2sinalpha)/(1 + cosalpha + sinalpha)` = y, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` is also equal to y.
`["Hint": "Express" (1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) * (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)]`
If m sinθ = n sin(θ + 2α), then prove that tan(θ + α)cotα = `(m + n)/(m - n)`
[Hint: Express `(sin(theta + 2alpha))/sintheta = m/n` and apply componendo and dividendo]
If cos(α + β) = `4/5` and sin(α – β) = `5/13`, where α lie between 0 and `pi/4`, find the value of tan2α.
[Hint: Express tan2α as tan(α + β + α – β)]
If tanx = `b/a`, then find the value of `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))`
Prove that cosθ `cos theta/2 - cos 3theta cos (9theta)/2` = sin 7θ sin 8θ.
[Hint: Express L.H.S. = `1/2[2costheta cos theta/2 - 2 cos 3theta cos (9theta)/2]`
If cosα + cosβ = 0 = sinα + sinβ, then prove that cos2α + cos2β = -2cos(α + β).
[Hint: (cosα + cosβ)2 - (sinα + sinβ)2 = 0]
Find the value of the expression `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]`
cos2θ cos2Φ + sin2(θ – Φ) – sin2(θ + Φ) is equal to ______.
Given, `f_n(x) = 1/n(sin^nx + cos^nx)` for n = 1, 2, 3, ....... Then the value of 24(f4(x) – f6(x)) is equal to ______.
The value of cos 255° + sin 195° is ______.
The number of solution of tan x + sec x = 2 cos x in [0, 2π] is ______.