Advertisements
Advertisements
प्रश्न
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
विकल्प
2 sin 3x
0
1
none of these
उत्तर
We have,
sin x + sin y = \[\sqrt{3}\] (cos y − cos x)
\[\Rightarrow 2\sin\left( \frac{x + y}{2} \right) \cos\left( \frac{x - y}{2} \right) = 2\sqrt{3}\sin\left( \frac{x + y}{2} \right) \sin\left( \frac{x - y}{2} \right)\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right) - 2\sqrt{3}\sin\left( \frac{x + y}{2} \right)\sin\left( \frac{x - y}{2} \right) = 0\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\frac{x + y}{2} = 0 \text{ or }, \cos\left( \frac{x - y}{2} \right)-\sqrt{3}\sin\left( \frac{x - y}{2} \right)=0\]
\[\Rightarrow\frac{x + y}{2}=0\text{ or },\tan\left( \frac{x - y}{2} \right)=\frac{1}{\sqrt{3}}=\tan\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },\frac{x - y}{2}=\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },x-y=\frac{\pi}{3}\]
Case - I
Where x = -y
In this case,
sin3x + sin3y = sin(-3y) + sin3y = - sin3y + sin3y = 0
Case - II
Where x - y = `pi/3`
or, \[ 3x = \pi + 3y\]
\[\text{So,} \sin 3x + \sin 3y = \sin\left( \pi + 3y \right) + \sin 3y\]
\[ = - \sin 3y + \sin 3y\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.