हिंदी

If Sin X + Sin Y = \[\Sqrt{3}\] (Cos Y − Cos X), Then Sin 3x + Sin 3y = - Mathematics

Advertisements
Advertisements

प्रश्न

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 

विकल्प

  • 2 sin 3x

  • 0

  • 1

  • none of these

MCQ
योग

उत्तर

We have,
sin x + sin y = \[\sqrt{3}\] (cos y − cos x)
\[\Rightarrow 2\sin\left( \frac{x + y}{2} \right) \cos\left( \frac{x - y}{2} \right) = 2\sqrt{3}\sin\left( \frac{x + y}{2} \right) \sin\left( \frac{x - y}{2} \right)\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right) - 2\sqrt{3}\sin\left( \frac{x + y}{2} \right)\sin\left( \frac{x - y}{2} \right) = 0\]
\[ \Rightarrow 2\sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\left( \frac{x + y}{2} \right)\left[ \cos\left( \frac{x - y}{2} \right) - \sqrt{3}\sin\frac{x - y}{2} \right] = 0\]
\[ \Rightarrow \sin\frac{x + y}{2} = 0 \text{ or }, \cos\left( \frac{x - y}{2} \right)-\sqrt{3}\sin\left( \frac{x - y}{2} \right)=0\]
\[\Rightarrow\frac{x + y}{2}=0\text{ or },\tan\left( \frac{x - y}{2} \right)=\frac{1}{\sqrt{3}}=\tan\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },\frac{x - y}{2}=\frac{\pi}{6}\]
\[\Rightarrow x=-y\text{ or },x-y=\frac{\pi}{3}\]

Case - I
Where x = -y

In this case,
sin3x + sin3y = sin(-3y) + sin3y = - sin3y + sin3y = 0
Case - II
Where x - y = `pi/3`
or, \[ 3x = \pi + 3y\]
\[\text{So,} \sin 3x + \sin 3y = \sin\left( \pi + 3y \right) + \sin 3y\]
\[ = - \sin 3y + \sin 3y\]
\[ = 0\]

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.4 | Q 13 | पृष्ठ २२

संबंधित प्रश्न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


The value of cos 52° + cos 68° + cos 172° is


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×