Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma)\]
\[ = 2sin\left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) + 2\cos \left( \frac{\gamma + \alpha + \beta + \gamma}{2} \right) \sin \left( \frac{\gamma - \alpha - \beta - \gamma}{2} \right)\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left( \frac{- \alpha - \beta}{2} \right)\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right) + 2\cos\left( \frac{2\gamma + \alpha + \beta}{2} \right)\sin\left[ - \left( \frac{\alpha + \beta}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ \cos\left( \frac{\alpha - \beta}{2} \right) - \cos\left( \frac{2\gamma + \alpha + \beta}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha - \beta + 2\gamma + \alpha + \beta}{4} \right) \sin\left( \frac{\alpha - \beta - 2\gamma - \alpha - \beta}{4} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ - 2\sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{- \beta - \gamma}{2} \right) \right]\]
\[\]
\[ = 2\sin\left( \frac{\alpha + \beta}{2} \right)\left[ 2\sin\left( \frac{\alpha + \gamma}{2} \right) sin\left( \frac{\beta + \gamma}{2} \right) \right]\]
\[\]
\[ = 4\sin\left( \frac{\alpha + \beta}{2} \right) \sin\left( \frac{\alpha + \gamma}{2} \right) \sin\left( \frac{\beta + \gamma}{2} \right)\]
\[\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.