Advertisements
Advertisements
प्रश्न
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
उत्तर
LHS = `(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")`
`= (2 cos ((7"A" + 5"A")/2) cos((7"A" - 5"A")/2))/(2 cos ((7"A" + 5"A")/2) sin((7"A" - 5"A")/2))`
`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`
`= (2 cos 6"A" cos "A")/(2 cos 6"A" sin "A")`
`= (cos "A")/(sin "A")`
= cot A = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`