मराठी

Write the Value of Sin π 12 Sin 5 π 12 . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].

बेरीज

उत्तर

sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\]
\[= \frac{1}{2} \times 2\left( \sin\frac{\pi}{12} \right) \left( \sin\frac{5\pi}{12} \right)\]
\[ = \frac{1}{2}\left[ \cos\left( \frac{\pi}{12} - \frac{5\pi}{12} \right) - \cos\left( \frac{\pi}{12} + \frac{5\pi}{12} \right) \right] \left[ \because 2\sin A \sin B = \cos(A - B) - \cos(A + B) \right]\]
\[ = \frac{1}{2}\left[ \cos\left( - \frac{\pi}{3} \right) - \cos\frac{\pi}{2} \right]\]
\[ = \frac{1}{2}\left( \frac{1}{2} - 0 \right)\]
\[ = \frac{1}{4}\]

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.3 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.3 | Q 2 | पृष्ठ २०

संबंधित प्रश्‍न

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

sin 163° cos 347° + sin 73° sin 167° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of cos 52° + cos 68° + cos 172° is


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×