मराठी

Prove That: Sin a + 2 Sin 3 a + Sin 5 a Sin 3 a + 2 Sin 5 a + Sin 7 a = Sin 3 a Sin 5 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]
बेरीज

उत्तर

Consider LHS:
\[ \frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin A \sin 2A + 2\sin 3A \sin 6A}{2\sin A \cos 2A + 2\sin 3A \cos 6A}\]
\[ = \frac{\cos \left( A - 2A \right) - \cos \left( A + 2A \right) + \cos \left( 3A - 6A \right) - \cos \left( 3A + 6A \right)}{\sin \left( A + 2A \right) + \sin \left( A - 2A \right) + \sin \left( 3A + 6A \right) + \sin \left( 3A - 6A \right)}\]
\[ = \frac{\cos\left( - A \right) - \cos 3A + \cos \left( - 3A \right) - \cos 9A}{\sin 3A \sin\left( - A \right) + \sin 9A + \sin \left( - 3A \right)}\]
\[ = \frac{\cos A - \cos 3A + \cos 3A - \cos 9A}{\sin 3A - \sin A + \sin 9A - \sin 3A}\]
\[ = \frac{\cos A - \cos 9A}{\sin 9A - \sin A}\]
\[ = \frac{- 2\sin \left( \frac{A + 9A}{2} \right) \sin \left( \frac{A - 9A}{2} \right)}{2\cos \left( \frac{A + 9A}{2} \right) \sin \left( \frac{9A - A}{2} \right)}\]
\[ = \frac{\sin5A\cos4A}{\sin 5A \cos \left( - 4A \right)}\]
\[ = \tan 5A\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 8.1 | पृष्ठ १८

संबंधित प्रश्‍न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the product of sine and cosine.

sin A + sin 2A


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Evaluate-

cos 20° + cos 100° + cos 140°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×