Advertisements
Advertisements
प्रश्न
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
उत्तर
\[LHS = \sin 20^\circ\sin 40^\circ \sin 80^\circ\]
\[ = \frac{1}{2}\left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right] \sin 80^\circ\]
\[ = \frac{1}{2}\left[ \cos 20^\circ - \frac{1}{2} \right] \sin 80^\circ\]
\[ = \frac{1}{2}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\sin 80^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{2}\sin \left( 90^\circ - 10^\circ \right) \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{2}\cos 10^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[= \frac{1}{4}\left[ 2\cos 10^\circ cos 20^\circ \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8} + \frac{1}{4}\sin 80^\circ - \frac{1}{4}\sin 80^\circ \left[ \because \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ \right]\]
\[ = \frac{\sqrt{3}}{8} = RHS\]
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Evaluate-
cos 20° + cos 100° + cos 140°