हिंदी

Prove That: Sin 5 a Cos 2 a − Sin 6 a Cos a Sin a Sin 2 a − Cos 2 a Cos 3 a = Tan a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]
योग

उत्तर

Consider LHS: 
\[ \frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 5A \cos 2A - 2\sin 6A \cos A}{2\sin A \sin 2A - 2\cos 2A \cos 3A}\]
\[ = \frac{\sin \left( 5A + 2A \right) + \sin \left( 5A - 2A \right) - \sin \left( 6A + A \right) - \sin \left( 6A - A \right)}{\cos \left( A - 2A \right) + \cos \left( A + 2A \right) - \cos \left( 2A + 3A \right) - \cos \left( 2A - 3A \right)}\]
\[ = \frac{\sin 7A + \sin 3A - \sin 7A - \sin 5A}{\cos \left( - A \right) + \cos 3A - \cos 5A - \cos \left( - A \right)}\]
\[ = \frac{\sin 7A + \sin 3A - \sin 7A - \sin 5A}{\cos A + \cos 3A - \cos 5A - cos A}\]
\[ = \frac{\sin 3A - \sin 5A}{\cos 3A - \cos 5A}\]
\[ = \frac{2\sin \left( \frac{3A - 5A}{2} \right) \cos \left( \frac{3A + 5A}{2} \right)}{- 2\cos \left( \frac{3A + 5A}{2} \right) \cos\left( \frac{3A - 5A}{2} \right)}\]
\[ = \frac{\sin \left( - A \right) \cos 4A}{- \cos 4A \cos \left( - A \right)}\]
\[ = \frac{- \sin A \cos 4A}{- \cos 4A\cos A}\]
\[ = \frac{\sin A}{\cos A}\]
\[ = \tan A\]
 = RHS
Hence, LHS = RHS .

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 8.06 | पृष्ठ १८

संबंधित प्रश्न

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Evaluate-

cos 20° + cos 100° + cos 140°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×