English

Find the polar co-ordinates of point whose Cartesian co-ordinates are (1,3) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the polar co-ordinates of point whose Cartesian co-ordinates are `(1, sqrt(3))`

Sum

Solution

(x, y) ≡ `(1, sqrt(3))`   .......[Given]

Using x = r cos θ and y = r sin θ, where (r, θ) are the required polar co-ordinates, we get

1 = r cos θ, `sqrt(3)` = r sin θ

Now, r = `sqrt(x^2 + y^2)`

= `sqrt(1 + 3)`

= 2

and tan θ = `("r" sin theta)/("r" cos theta)`

= `sqrt(3)/1`

= `sqrt(3)`

= `tan  pi/3`

∴ θ = `"n"pi + pi/3`, n ∈ Z    .......`[(∵ tan theta = tan alpha  "implies"),(theta = "n"pi + alpha","  "n" ∈ "Z")]`

For polar co-ordinates, 0 ≤ θ < 2π

∴ θ = `pi/3` or θ = `pi + pi/3 = (4pi)/3`

But the given point lies in the 1st quadrant.

∴ θ = `pi/3`

∴ The required polar co-ordinates are `(2, pi/3)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.3: Trigonometric Functions - Very Short Answers

RELATED QUESTIONS

In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot  C/2`


In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


The angles of the ΔABC are in A.P. and b:c=`sqrt3:sqrt2` then find`angleA,angleB,angleC`

 


If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to

(A) `1/sqrt5`

(B) `1/sqrt10`

(C) `1/sqrt15`

(D) `1/(2sqrt5)`


The principal solutions of cot x = -`sqrt3`  are .................


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


 In , ΔABC with usual notations prove that

(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(3/4, (3pi)/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(0, 1/2)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any Δ ABC, prove the following:

a sin A - b sin B = c sin (A - B)


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

`"cos 2A"/"a"^2 - "cos 2B"/"b"^2 = 1/"a"^2 - 1/"b"^2`


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Show that

`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


If `tan^-1 (("x" - 1)/("x" - 2)) + tan^-1 (("x" + 1)/("x" + 2)) = pi/4`, find the value of x.


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, if cos A = `(sinB)/(2sinC)`, then ∆ABC is ______.


In ∆ABC, if b2 + c2 − a2 = bc, then ∠A = ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2 


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


With usual notations, prove that `(cos "A")/"a" + (cos "B")/"b" + (cos "C")/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`


In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ∆ABC, prove that `(cos 2"A")/"a"^2 - (cos 2"c")/"c"^2 = 1/"a"^2 - 1/"c"^2`


In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled


In ∆ABC, prove that `sin  ((A - B)/2) = ((a - b)/c) cos  C/2` 


In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0


In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0


In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______ 


In a ΔABC, 2ab sin`((A + B - C)/2)` = ______


If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In ΔABC, `(sin(B - C))/(sin(B + C))` = ______


If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______ 


In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______ 


The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.


If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.


If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is ______.


In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.


In ΔABC, if `"a" cos^2  "C"/2 + "c" cos^2  "A"/2 = (3"b")/2`, then a, b, c are in ______.


In a triangle ABC, b = `sqrt3`, c = 1 and ∠A = 30°, then the largest angle of the triangle is ______ 


In ΔABC, `cos"A"/"a" = cos"B"/"b"  cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.


In a ΔABC, if a = `sqrt(2)` x and b = 2y and ∠C = 135°, then the area of triangle is ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.


In any ΔABC, prove that:

(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.


If in ΔABC, `sin  A/2 * sin  C/2 = sin  B/2` and 2s is the perimeter of the triangle, then s = ______.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×