मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the triangle in which a = (3+1), b = (3-1) and ∠C = 60°. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.

बेरीज

उत्तर

Given: a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°

By cosine rule,

c2 = a2 + b2 - 2ab cos C

`= (sqrt3 + 1)^2 + (sqrt3 - 1)^2 - 2(sqrt3 + 1)(sqrt3 - 1) cos 60^circ`

= 3 + 1 + `2sqrt3` + 3 + 1 - `2sqrt3` - 2(3 - 1)`(1/2)`

= 8 - 2 = 6

∴ c = `sqrt6`      ....[∵ c > 0]

By sine rule,

`"a"/("sin A") = "b"/("sin B") = "c"/("sin C")`

∴ `(sqrt3 + 1)/("sin A") = (sqrt3 - 1)/("sin B") = sqrt6/("sin" 60^circ)`

∴ `(sqrt3 + 1)/("sin A") = (sqrt3 - 1)/("sin B") = sqrt6/(sqrt3//2) = 2sqrt2`

∴ sin A = `(sqrt3 + 1)/(2sqrt2) and sin "B" = (sqrt3 - 1)/(2sqrt2)`

∴ `sin "A" = sqrt3/(2sqrt2) + 1/(2sqrt2) and sin "B" = sqrt3/(2sqrt2) - 1/(2sqrt2)`

∴ sin A = `sqrt3/2 xx 1/sqrt2 + 1/2 xx 1/sqrt2`

∴ and sin B = `sqrt3/2 xx 1/sqrt2 - 1/2 xx 1/sqrt2`

∴ sin A = sin 60° cos 45° + cos 60° sin 45° and
sin B = sin 60° cos 45° - cos 60° sin 45°

∴ sin A = sin (60° + 45°) = sin 105°

and sin B = sin (60° - 45°) = sin 15°

∴ A = 105° and B = 15°

Hence, A = 105°, B = 15° and C = `sqrt6` units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Miscellaneous exercise 3 [पृष्ठ १०९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 10 | पृष्ठ १०९

संबंधित प्रश्‍न

In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`


In Δ ABC, if a = 13, b = 14 and c = 15, then sin (A/2)= _______.

(A) `1/5`

(B) `sqrt(1/5)`

(C) `4/5`

(D) `2/5`


With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2


The principal solutions of cot x = -`sqrt3`  are .................


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


 In ,Δ ABC with usual notations prove that 
b2 = c2 +a2 - 2 ca cos B


 In , ΔABC with usual notations prove that

(a-b)2 cos2 `("C"/2) +("a"+"b")^2 "sin"^2("C"/2) = "c"^2`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(3/4, (3pi)/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(0, 1/2)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


In any Δ ABC, prove the following:

a2 sin (B - C) = (b2 - c2) sin A.


In any Δ ABC, prove the following:

`("b" - "c")/"a" = (tan  "B"/2 - tan  "C"/2)/(tan  "B"/2 +tan  "C"/2)`


In Δ ABC, if ∠C = 90°, then prove that sin (A - B) = `("a"^2 - "b"^2)/("a"^2 + "b"^2)`


In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


In Δ ABC, if a cos2 `"C"/2 + "c cos"^2 "A"/2 = "3b"/2`, then prove that a, b, c are in A.P.


Show that `2 sin^-1 (3/5) = tan^-1(24/7)`


Show that

`tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1 (1/8) = pi/4.`


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, if ∠A = 30°, ∠B = 60°, then the ratio of sides is ______.


If polar co-ordinates of a point are `(3/4, (3pi)/4)`, then its Cartesian co-ordinate are ______


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


In ∆ABC, if sin2A + sin2B = sin2C, then show that a2 + b2 = c2 


Find the polar co-ordinates of point whose Cartesian co-ordinates are `(1, sqrt(3))`


In ΔABC, a = 3, b = 4 and sin A = `3/4`, find ∠B


In ΔABC, if a cos A = b cos B, then prove that ΔABC is either a right angled or an isosceles triangle.


In ∆ABC, prove that `sin  ((A - B)/2) = ((a - b)/c) cos  C/2` 


In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0


In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In ΔABC, if (a+ b - c)(a + b + c) = 3ab, then ______.


In a ΔABC, cot `(("A - B")/2)* tan (("A + B")/2)` is equal to


In a ΔABC if 2 cos C = sin B · cosec A, then ______.


With usual notations, if the angles A, B, C of a Δ ABC are in AP and b : c = `sqrt3 : sqrt2`.


In a triangle ABC with usual notations, if `(cos "A")/"a" = (cos "B")/"b" = (cos "C")/"c"`, then area of triangle ABC with a = `sqrt6` is ____________.


If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______ 


In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.


If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is ______


If P(6, 10, 10), Q(1, 0, -5), R(6, -10, λ) are vertices of a triangle right angled at Q, then value of λ is ______.


In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


In Δ ABC, with the usual notations, if `(tan  "A"/2)(tan  "B"/2) = 3/4` then a + b = ______.


In ΔABC if sin2A + sin2B = sin2C and l(AB) = 10, then the maximum value of the area of ΔABC is ______ 


In ΔABC, if `cosA/a = cosB/b,` then triangle ABC is ______ 


In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______ 


The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.


If polar co-ordinates of a point are `(1/2, pi/2)`, then its cartesian co-ordinates are ______.


If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.


If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.


In ΔABC, if `"a" cos^2  "C"/2 + "c" cos^2  "A"/2 = (3"b")/2`, then a, b, c are in ______.


In ΔABC, `cos"A"/"a" = cos"B"/"b"  cos"C"/"c"`. If a = `1/sqrt(6)`, then the area of the triangle is ______.


If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.


In a ΔABC, if `("b" + "c")/11 = ("c" + "a")/12 = ("a" + "b")/13`, then cos C = ______.


The number of solutions of the equation sin 2x – 2 cosx + 4 sinx = 4 in the interval [0, 5π] is ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


If in a ΔABC `a cos^2(C/2) + c cos^2(A/2) = (3b)/2`, then the sides a, b and c ______.


In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.


In any ΔABC, prove that:

(b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×