English

If y = ax+b, prove that y(d2ydx2)+(dydx)2 = 0. - Mathematics

Advertisements
Advertisements

Question

If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.

Sum

Solution

Given, y = `sqrt(ax + b)`

Then, `dy/dx = a/(2sqrt(ax + b)`

`\implies dy/dx = a/(2y)`

`\implies y dy/dx = a/2`

Again, differentiating with respect to x, we get

`\implies y(d^2y)/(dx^2) + dy/dx xx dy/dx` = 0

`\implies y(d^2y)/(dx^2) + (dy/dx)^2` = 0

Hence Proved.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

tan–1 x


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


sec(x + y) = xy


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


Derivative of cot x° with respect to x is ____________.


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×