मराठी

Differentiate the function with respect to x. cosx3.sin2(x5) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`

बेरीज

उत्तर

`cos x^3 . sin^2 (x^5)`

Let y = `cos x^3 . sin^2 (x^5)`

`dy/dx = (d(cos x^3. sin^2 (x^5)))/dx` by quotient rule

`= (cos x^3  d sin^2 (x^5))/dx + (sin^2 (x^5) d cos x^3)/dx`  By the chain rule

`= (cos x^3 (2 sin (x^5)). d sin (x^5))/dx + (sin^2 (x^5) (- sin x^3). d  x^3)/dx`

`= (cos x^3 (2 sin (x^5)). cos x^5 dx^5)/dx + sin^2 (x^5) (- sin x^3) 3x^2` 

`= cos x^3 2 sin (x^5) cos x^5 . 5x^4 + sin^2 (x^5)(- sin x^3) 3x^2`

`= 10  x^4 sin x^5 cos x^5 cos x^3 - sin x^3 sin^2 sin^2 x^5`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.2 [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.2 | Q 6 | पृष्ठ १६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x.

`cos (sqrtx)`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

sin3 x + cos6 x


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


If f (x) = |x|3, show that f ″(x) exists for all real x and find it.


if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


If y = tan(x + y), find `("d"y)/("d"x)`


Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`


Let f(x)= |cosx|. Then, ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


sinx2 + sin2x + sin2(x2)


(sin x)cosx 


(x + 1)2(x + 2)3(x + 3)4


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.


Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.


If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×