English

Differentiate tan-1(1-x2x) with respect tocos-1(2x1-x2), where x∈(12,1) - Mathematics

Advertisements
Advertisements

Question

Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`

Sum

Solution

Let u = `tan^-1 (sqrt(1 - x^2)/x)` and v = `cos^-1(2xsqrt(1 - x^2))`.

We want to find `"du"/"dv" = (("du")/("dx"))/(("dv")/("dx"))`

Now u = `tan^-1 (sqrt(1 - x^2)/x)`.

Put x = `sintheta. (pi/2 < theta < pi/2)`

Then u = `tan^-1 (sqrt(1 - sin^2theta)/sintheta)`

= `tan^-1 (cot theta)`

= `tan^-1 {tan (pi/2 - theta)}`

= `pi/2 - theta`

= `pi/2 - sin^-1x`

Hence `"du"/"dx" = (-1)/sqrt(1 - x^2)`.

Now v = `cos^-1 (2x sqrt(1 - x^2))`

= `pi/2 - sin^-1 (2x sqrt(1 - x^2))`

= `pi/2 - sin^-1 (2sintheta sqrt(1 - sin^2theta))`

= `pi/2 - sin^-1 (sin 2theta)`

= `pi/2 - sin^-1 {sin (pi - 2theta)}`  .......{Since  `pi/2` < 2θ < π]

= `pi/2 - (pi / 2theta)`

= `(-pi)/2 + 2theta`

⇒ v = `(-pi)/2 + 2sin^-1x`

⇒ `"dv"/"dv" = (("du")/("d"x))/(("dv")/("dx"))`

= `((-1)/sqrt(1 - x^2))/(2/sqrt(1 - x^2))`

= `(-1)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Solved Examples [Page 102]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Solved Examples | Q 23 | Page 102

RELATED QUESTIONS

Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0


If y = tan(x + y), find `("d"y)/("d"x)`


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

|sinx| is a differentiable function for every value of x.


`sin sqrt(x) + cos^2 sqrt(x)`


(sin x)cosx 


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to


Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.


The function f(x) = x | x |, x ∈ R is differentiable ______.


Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×