Advertisements
Advertisements
Question
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.
Solution
Any function will not be differentiable if the left hand limit and the right hand limit are not equal.
f(x) = [x], 0 < x < 3
(i) At x = 1
Left side limit = `lim_(h -> 0) ([1 - h] - [1])/-h`
= `lim_(h -> 0) (0 - 1)/-h`
= `lim_(h -> 0) 1/h`
= infinite
right hand limit
= `lim_(h -> 0) ([1 + h] - [1])/h`
= `lim_(h -> 0) (1 - 1)/h`
= 0
Left side limit and right side limit are not equal.
Hence, f(x) is not differentiable at x = 1.
(ii) At x = 2
left side limit
= `lim_(h -> 0) (f(2 + h) - f(2))/h`
= `lim_(h -> 0) ([2 + h]-2)/h`
= `lim_(h -> 0) (2 -2)/h`
= 0
right hand limit
= `lim_(h -> 0) (f(2 - h) - f (2))/h`
= `lim_(h -> 0) ([2 - h] - [2])/-h`
= `lim_(h -> 0) (1 - 2)/-h`
= infinite
Left side limit and right side limit are not equal.
Hence, f(x) is not differentiable at x = 2.
RELATED QUESTIONS
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
Discuss the continuity and differentiability of the
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tan(x + y), find `("d"y)/("d"x)`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Let f(x)= |cosx|. Then, ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
|sinx| is a differentiable function for every value of x.
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
A function is said to be continuous for x ∈ R, if ____________.
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.