English

Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2. - Mathematics

Advertisements
Advertisements

Question

Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.

Sum

Solution

Any function will not be differentiable if the left hand limit and the right hand limit are not equal.

f(x) = [x], 0 < x < 3

(i) At x = 1

Left side limit = `lim_(h -> 0) ([1 - h] - [1])/-h`

= `lim_(h -> 0) (0 - 1)/-h`

= `lim_(h -> 0) 1/h`

= infinite

right hand limit

= `lim_(h -> 0) ([1 + h] - [1])/h`

= `lim_(h -> 0) (1 - 1)/h`

= 0

Left side limit and right side limit are not equal.

Hence, f(x) is not differentiable at x = 1.

(ii) At x = 2

left side limit

= `lim_(h -> 0) (f(2 + h) - f(2))/h`

= `lim_(h -> 0) ([2 + h]-2)/h`

= `lim_(h -> 0) (2 -2)/h`

= 0

right hand limit

= `lim_(h -> 0) (f(2 - h) - f (2))/h`

= `lim_(h -> 0) ([2 - h] - [2])/-h`

= `lim_(h -> 0) (1 - 2)/-h`

= infinite

Left side limit and right side limit are not equal.

Hence, f(x) is not differentiable at x = 2.

shaalaa.com
  Is there an error in this question or solution?

RELATED QUESTIONS

Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0


If y = tan(x + y), find `("d"y)/("d"x)`


Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`


Let f(x)= |cosx|. Then, ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


|sinx| is a differentiable function for every value of x.


sinn (ax2 + bx + c)


`sin^-1  1/sqrt(x + 1)`


(sin x)cosx 


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


A function is said to be continuous for x ∈ R, if ____________.


`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to


Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.


If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.


If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×