Advertisements
Advertisements
Question
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
Solution
Let y = tan–1(sec x + tan x)
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" [tan^-1 (secx + tanx)]`
= `1/(1 + (secx + tanx)^2) * "d"/"dx"(secx + tanx)`
= `1/(1 + sec^2 + tan^2x + 2 sec x tanx) * (secx tanx + sec^2x)`
= `1/((1 + tan^2x) + sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(sec^2x + sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(2sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(2secx(secx + tanx)) * secx(tanx + secx)`
= `1/2`
Hence, `"dy"/"dx" = 1/2`
Alternative solution:
Let y = `tan^-1 (secx + tanx), (-pi)/2 < x < pi/2`
= `tan^-1 (1/cosx + sinx/cosx)`
= `tan^-1 ((1 + sinx)/cosx)`
= `tan^-1 [(cos^2 x/2 + sin^2 x/2 + 2sin x/2 cos x/2)/(cos^2 x/2 - sin^2 x/2)]` ......`[(because 2x = 2sinx cosx),(cos2x = cos^2x - sin^2x)]`
= `tan^-1 [(cos x/2 + sin x/2)^2/((cos x/2 + sin x/2)(cos x/2 - sin x/2))]`
= `tan^-1 [(cos x/2 + sin x/2)/(cos x/2 - sin x/2)]`
= `tan^-1 [(1 + tan x/2)/(1 - tan x/2)]` .....[Dividing the Nr. and Den. by cos `x/2`]
= `tan^-1 [(tan pi/4 + tan x/2),(1 - tan pi/4 * tan x/2)]`
= `tan^-1 [tan (pi/4 + x/2)]`
∴ y = `pi/4 + x/2`
Differentiating both sides w.r.t. x
`"dy"/"dx" = 1/2 "d"/"dx" (x)`
= `1/2 * 1`
= `1/2`
Hence, `"dy"/"dx" = 1/2`.
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
cos (sin x)
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If y = tan(x + y), find `("d"y)/("d"x)`
Let f(x)= |cosx|. Then, ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
A function is said to be continuous for x ∈ R, if ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
If sin y = x sin (a + y), then value of dy/dx is
If f(x) = | cos x |, then `f((3π)/4)` is ______.