English

Tan-1(secx+tanx),-π2<x<π2 - Mathematics

Advertisements
Advertisements

Question

`tan^-1 (secx + tanx), - pi/2 < x < pi/2`

Sum

Solution

Let y = tan–1(sec x + tan x)

Differentiating both sides w.r.t. x

`"dy"/"dx" = "d"/"dx" [tan^-1 (secx + tanx)]`

= `1/(1 + (secx + tanx)^2) * "d"/"dx"(secx + tanx)`

= `1/(1 + sec^2 + tan^2x + 2 sec  x tanx) * (secx tanx + sec^2x)`

= `1/((1 + tan^2x) + sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(sec^2x + sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(2sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(2secx(secx + tanx)) * secx(tanx + secx)`

= `1/2`

Hence, `"dy"/"dx" = 1/2`

Alternative solution:

Let y = `tan^-1 (secx + tanx), (-pi)/2 < x < pi/2`

= `tan^-1 (1/cosx + sinx/cosx)`

= `tan^-1 ((1 + sinx)/cosx)`

= `tan^-1 [(cos^2  x/2 + sin^2  x/2 + 2sin  x/2 cos  x/2)/(cos^2  x/2 - sin^2  x/2)]`  ......`[(because  2x = 2sinx cosx),(cos2x = cos^2x - sin^2x)]` 

= `tan^-1 [(cos  x/2 + sin  x/2)^2/((cos  x/2 + sin  x/2)(cos  x/2 - sin  x/2))]`

= `tan^-1 [(cos  x/2 + sin  x/2)/(cos  x/2 - sin  x/2)]`

= `tan^-1  [(1 + tan  x/2)/(1 - tan  x/2)]`  .....[Dividing the Nr. and Den. by cos  `x/2`]

= `tan^-1  [(tan  pi/4 + tan  x/2),(1 - tan  pi/4 * tan  x/2)]`

= `tan^-1 [tan (pi/4 + x/2)]`

∴ y = `pi/4 + x/2`

Differentiating both sides w.r.t. x

`"dy"/"dx" = 1/2  "d"/"dx" (x)`

= `1/2 * 1`

= `1/2`

Hence, `"dy"/"dx" = 1/2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 110]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 39 | Page 110

RELATED QUESTIONS

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

cos (sin x)


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


If y = tan(x + y), find `("d"y)/("d"x)`


Let f(x)= |cosx|. Then, ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

cos |x| is differentiable everywhere.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


(sin x)cosx 


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.


A function is said to be continuous for x ∈ R, if ____________.


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be


If sin y = x sin (a + y), then value of dy/dx is


If f(x) = | cos x |, then `f((3π)/4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×