English

If f (x) = |x|3, show that f ″(x) exists for all real x and find it. - Mathematics

Advertisements
Advertisements

Question

If f (x) = |x|3, show that f ″(x) exists for all real x and find it.

Sum

Solution

Here,  f(x) = |x|3 = x3

When, x > 0 |x| = x,

∴ f(x) = x3

f'(x) = 3x2, f'(x) = 6x             …(1)

When, x < 0 |x| = - x

f(x) = |x|3 = (- x)3 = - x3

f'(x) = -3x2, f'(x) = - 6x         …(2)

Thus, 

`{(6x, if x>= 0),(-6x, if x < 0):}`

From (1) and (2),

f'(x) = 6|x|

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 192]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 18 | Page 192

RELATED QUESTIONS

Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x.

`sec(tan (sqrtx))`


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x.

`cos (sqrtx)`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Differentiate w.r.t. x the function:

`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


If y = tan(x + y), find `("d"y)/("d"x)`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Differential coefficient of sec (tan–1x) w.r.t. x is ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

cos |x| is differentiable everywhere.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


`sin sqrt(x) + cos^2 sqrt(x)`


sinx2 + sin2x + sin2(x2)


`sin^-1  1/sqrt(x + 1)`


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to


Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.


If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.


If f(x) = | cos x |, then `f((3π)/4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×