Advertisements
Advertisements
Question
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
Solution
(1) | (2) | (3) | (4) | (5) |
p | q | q → q | p → q | ( q → q ) v ( p → q ) |
T | T | T | T | T |
T | F | T | F | T |
F | T | F | T | T |
F | F | T | T | T |
The truth table contains only T in the last column.
Hence, the given statement is a tautology.
APPEARS IN
RELATED QUESTIONS
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Write the negation of the Following Statement :
∀ y ∈ N, y2 + 3 ≤ 7
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Write the dual of the following:
(p ∨ q) ∨ r
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the dual statement of the following compound statement.
Radha and Sushmita cannot read Urdu.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
Construct the truth table for the following statement pattern.
(~p ∨ q) ∧ (~p ∧ ~q)
What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
The false statement in the following is ______.
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
The contrapositive of p → ~ q is ______
If p → (∼p v q) is false, then the truth values of p and q are respectively
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].