English

Determine whether the following statement pattern is a tautology, contradiction, or contingency. [(~p ∧ q) ∧ (q ∧ r)] ∨ (~q) - Mathematics and Statistics

Advertisements
Advertisements

Question

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)

Sum

Solution

p q r ~p ~q ~p∧q q∧r (~p∧q)∧(q∧r) [(~p∧q)∧(q∧r)]∨(~q)
T T T F F F T F F
T T F F F F F F F
T F T F T F F F T
T F F F T F F F T
F T T T F T T T T
F T F T F T F F F
F F T T T F F F T
F F F T T F F F T

Truth values in the last column are not identical. Hence, it is contingency.

shaalaa.com

Notes

The answer in the textbook is incorrect.

  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Miscellaneous Exercise 1 [Page 33]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.13 | Page 33

RELATED QUESTIONS

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


(p ∧ q) → r is logically equivalent to ________.


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


The false statement in the following is ______.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


Examine whether the statement pattern

[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


The converse of contrapositive of ∼p → q is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×