English

Determine whether the following statement pattern is a tautology, contradiction, or contingency. [~(p ∨ q) → p] ↔ [(~p) ∧ (~q)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]

Sum

Solution

p q ~p ~q p∨q ~(p∨q) ~(p∨q)→p (~p)∧(~q) [~(p∨q)→p]↔[(~p)∧(~q)]
T T F F T F T F F
T F F T T F T F F
F T T F T F T F F
F F T T F T F T F

All the truth values in the last column are F. Hence, it is a contradiction.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Miscellaneous Exercise 1 [Page 33]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.13 | Page 33

RELATED QUESTIONS

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


If p is any statement then (p ∨ ∼p) is a ______.


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p → q) ∧ r


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


The contrapositive of p → ~ q is ______


Which of the following is not true for any two statements p and q?


The converse of contrapositive of ∼p → q is ______.


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×