English

Write Converse and Inverse of the Following Statement: “If a Man is a Bachelor Then He is Unhappy.” - Mathematics and Statistics

Advertisements
Advertisements

Question

Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 

Sum

Solution

If a man is a bachelor , then he is unhappy.

Let P : A man is a bachelor
      q : He is unhappy
(a) Its converse is q → p
i.e. , If a man is unhappy then he is a bachelor.
(b) Its inverse is ∼ p → ∼ q
i.e. , If a man is not bachelor then he is happy.
(c) Its contrapositive is ∼ q → ∼ p
i.e., If a man is happy then he is not a bachelor.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (February) Set 1

RELATED QUESTIONS

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Write the dual of the following statements: (p ∨ q) ∧ T


Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


If p is any statement then (p ∨ ∼p) is a ______.


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Write the dual of the following:

~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


If p → (∼p v q) is false, then the truth values of p and q are respectively


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×