English

Determine whether the following statement pattern is a tautology, contradiction or contingency: [(p ∧ (p → q)] → q - Mathematics and Statistics

Advertisements
Advertisements

Question

Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q

Sum

Solution

p q p → q p ∧ (p → q) [p ∧ (p → q)] → q
T T T T T
T F F F T
F T T F T
F F T F T

All the entries in the last column of the above truth table are T.
∴ [(p ∧ (p → q)] → q is a tautology.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Miscellaneous Exercise 1 [Page 33]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the dual statement of the following compound statement.

13 is prime number and India is a democratic country.


Write the dual statement of the following compound statement.

Karina is very good or everybody likes her.


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p → q) ∧ r


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Construct the truth table for the following statement pattern.

(p ∨ r) → ~(q ∧ r)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


The contrapositive of p → ~ q is ______


Write the dual of the following.

13 is prime number and India is a democratic country


If p → (∼p v q) is false, then the truth values of p and q are respectively


Which of the following is not equivalent to p → q.


The equivalent form of the statement ~(p → ~ q) is ______.


Which of the following is not true for any two statements p and q?


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×