English

Write the negation of the following statement. ∃ n ∈ N, (n2 + 2) is odd number. - Mathematics and Statistics

Advertisements
Advertisements

Question

Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.

One Line Answer

Solution

∀ n ∈ N, (n2 + 2) is not odd number.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.8 [Page 21]

RELATED QUESTIONS

Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Using the rules of negation, write the negation of the following:

(~p ∧ q) ∧ (~q ∨ ~r)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


The false statement in the following is ______.


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


The equivalent form of the statement ~(p → ~ q) is ______.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


The converse of contrapositive of ∼p → q is ______.


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×