Advertisements
Advertisements
Question
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
Options
Contingency
Contradiction
Tautology
None of these
Solution
Tautology
APPEARS IN
RELATED QUESTIONS
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(p ∨ q) ∧ ∼p] ∧ ∼q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual of the following:
(p ∨ q) ∨ r
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the dual statement of the following compound statement.
Radha and Sushmita cannot read Urdu.
Write the dual statement of the following compound statement.
A number is a real number and the square of the number is non-negative.
Write the negation of the following statement.
All the stars are shining if it is night.
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Write the dual of the following.
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Which of the following is not equivalent to p → q.
The equivalent form of the statement ~(p → ~ q) is ______.
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
The converse of contrapositive of ∼p → q is ______.