English

Determine whether the following statement pattern is a tautology, contradiction, or contingency. [~(p ∧ q) → p] ↔ [(~p) ∧ (~q)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]

Sum

Solution

p q ~p ~q p∧q ~(p∧q) ~(p∧q)→p (~p)∧(~q) [~(p∧q)→p]↔[(~p)∧(~q)]
T T F F T F T F F
T F F T F T T F F
F T T F F T F F T
F F T T F T F T F

Truth values in the last column are not identical. Hence, it is contingency.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Miscellaneous Exercise 1 [Page 33]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.13 | Page 33

RELATED QUESTIONS

Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth tables for the following statement pattern.

(~ p ∨ q) ∧ (~ p ∨ ~ q)


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify

~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


If p → (∼p v q) is false, then the truth values of p and q are respectively


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


The converse of contrapositive of ∼p → q is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×