English

Examine whether the following statement pattern is a tautology, a contradiction or a contingency. q ∨ [~ (p ∧ q)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]

Sum

Solution

p q p ∧ q ~ (p ∧ q) q ∨ [~ (p ∧ q)]
T T T F T
T F F T T
F T F T T
F F F T T

All the truth values in the last column are T. Hence, it is a tautology.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.6 [Page 16]

APPEARS IN

RELATED QUESTIONS

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Write the dual of the following statements: (p ∨ q) ∧ T


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Write the dual statement of the following compound statement.

13 is prime number and India is a democratic country.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p → q) ∧ r


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


The converse of contrapositive of ∼p → q is ______.


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×