Advertisements
Advertisements
Question
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Solution
p | q | ∼p | ∼q |
p ∧ q |
∼p ∧ q | p ∨ ∼q | ∼p ∧ ∼q | (I) ∨ (II) ∨ (III) ∨ (IV) |
(I) | (II) | (III) | (IV) | |||||
T | T | F | F | T | F | T | F | T |
T | F | F | T | F | F | T | F | T |
F | T | T | F | F | T | F | F | T |
F | F | T | T | F | F | T | T | T |
All the entries in the last column of the above truth table are T.
∴ (p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q) is a tautology.
APPEARS IN
RELATED QUESTIONS
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Write the dual of the following statements: (p ∨ q) ∧ T
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p ∧ q) (p → r)
Using the truth table prove the following logical equivalence.
[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(p ∨ q) ∧ ∼p] ∧ ∼q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p → q) ∨ (q → p)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the dual statement of the following compound statement.
Radha and Sushmita cannot read Urdu.
Write the dual statement of the following compound statement.
A number is a real number and the square of the number is non-negative.
Write the negation of the following statement.
All the stars are shining if it is night.
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Write the negation of the following statement.
Some continuous functions are differentiable.
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
With proper justification, state the negation of the following.
(p → q) ∨ (p → r)
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(~p ∨ q) ∧ (~p ∧ ~q)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
The false statement in the following is ______.
Write the converse and contrapositive of the following statements.
“If a function is differentiable then it is continuous”
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
The contrapositive of p → ~ q is ______
The equivalent form of the statement ~(p → ~ q) is ______.
Which of the following is not true for any two statements p and q?
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`