English

Using the truth table prove the following logical equivalence. [∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r - Mathematics and Statistics

Advertisements
Advertisements

Question

Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r

Chart

Solution

1 2 3 4 5 6 7
p q r p ∨ q ∼ (p ∨ q) ∼ (p ∨ q) ∨ (p ∨ q) [∼ (p ∨ q) ∨ (p ∨ q)] ∧ r
T T T T F T T
T T F T F T F
T F T T F T T
T F F T F T F
F T T T F T T
F T F T F T F
F F T F T T T
F F F F T T F

The entries in columns 3 and 7 are identical.
∴ [∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.2 [Page 13]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


If p is any statement then (p ∨ ∼p) is a ______.


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual statement of the following compound statement.

13 is prime number and India is a democratic country.


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


With proper justification, state the negation of the following.

(p → q) ∧ r


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


The contrapositive of p → ~ q is ______


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Which of the following is not true for any two statements p and q?


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×