English

If P and Q Are True Statements and R and S Are False Statements, Find the Truth Value of the Following : ( P ∧ ∼ R ) ∧ ( ∼ Q ∧ S) - Mathematics and Statistics

Advertisements
Advertisements

Question

If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )

Sum

Solution

Given p is T, q is T, r is F, s is F

( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )

≡ ( T ∧ ∼ F ) ∧ ( ∼ T ∧ F )

≡ ( T ∧ T ) ∧ ( F ∧ F )

≡ T ∧ F

≡ F
∴ The truth value of the given statement is F.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (February) Set 1

RELATED QUESTIONS

State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the dual statement of the following compound statement.

Radha and Sushmita cannot read Urdu.


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×