English

What is tautology? What is contradiction? Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology. - Mathematics and Statistics

Advertisements
Advertisements

Question

What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.

Short Note

Solution

  • Tautology:
    A statement pattern having truth value always T, irrespective of the truth values of its component statement is called a tautology.
  • Contradiction:
    A statement pattern having truth value always F, irrespective of the truth values of its component statement is called a contradiction.

Let Statement p tautology. Consider, truth table

p ~ p
T F

i.e., negation of tautology is contradiction.
Let statement of contradiction. Consider, truth table

q ~ q
F T

i.e., negation of contradiction is tautology.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Miscellaneous Exercise 1 [Page 33]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.12 | Page 33

RELATED QUESTIONS

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth tables for the following statement pattern.

(~ p ∨ q) ∧ (~ p ∨ ~ q)


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Using the truth table, verify

~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual of the following:

~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

Some continuous functions are differentiable.


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


The false statement in the following is ______.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


The equivalent form of the statement ~(p → ~ q) is ______.


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×