English

Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ . - Mathematics and Statistics

Advertisements
Advertisements

Question

Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .

Options

  • (p ∧ q) → (p ∨ q)

  • ∼ (p ∨ q) → (p ∧ q)

  • (∼p ∧ ∼q) → (∼p ∨ ∼q)

  • (∼p ∨ ∼q) → (∼p ∧ ∼q)

MCQ
Fill in the Blanks

Solution

Inverse of statement pattern (p ∨ q) → (p ∧ q) is (∼p ∧ ∼q) → (∼p ∨ ∼q).

Explanation:

From De-Morgan’s law: ∼ (p ∨ q) is equivalent to (∼p ∧ ∼q) and ∼ (p ∧ q) is equivalent to (∼p ∨ ∼q).

The inverse of the logic (p ∨ q) → (p ∧ q) is ∼ (p ∨ q) →∼ (p ∧ q) which is equal to (∼p ∧ ∼q) → (∼p ∨ ∼q).

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Miscellaneous Exercise 1 [Page 32]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

(p → q) ∧ (p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Prepare truth tables for the following statement pattern.

(~ p ∨ q) ∧ (~ p ∨ ~ q)


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual of the following:

(p ∨ q) ∨ r


Write the dual statement of the following compound statement.

13 is prime number and India is a democratic country.


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


The false statement in the following is ______.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


Write the dual of the following.

13 is prime number and India is a democratic country


Examine whether the statement pattern

[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.


If p → (∼p v q) is false, then the truth values of p and q are respectively


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Which of the following is not true for any two statements p and q?


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


The converse of contrapositive of ∼p → q is ______.


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×