Advertisements
Advertisements
Question
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Solution
1 | 2 | 3 | 4 | 5 | 6 | 7 |
p | q | ~p | ~q | p∧q | ~(p∧q) | ~p∨~q |
T | T | F | F | T | F | F |
T | F | F | T | F | T | T |
F | T | T | F | F | T | T |
F | F | T | T | F | T | T |
In the above table, entries in columns 6 and 7 are identical.
∴ Statement ~(p ∧ q) and ~p ∨ ~q are equivalent.
APPEARS IN
RELATED QUESTIONS
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`
Write the dual of the following statements: (p ∨ q) ∧ T
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the dual statement of the following compound statement.
Radha and Sushmita cannot read Urdu.
Write the negation of the following statement.
All the stars are shining if it is night.
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
The false statement in the following is ______.
Write the dual of the following
(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
Complete the truth table.
p | q | r | q → r | r → p | (q → r) ˅ (r → p) |
T | T | T | T | `square` | T |
T | T | F | F | `square` | `square` |
T | F | T | T | `square` | T |
T | F | F | T | `square` | `square` |
F | T | T | `square` | F | T |
F | T | F | `square` | T | `square` |
F | F | T | `square` | F | T |
F | F | F | `square` | T | `square` |
The given statement pattern is a `square`
The converse of contrapositive of ∼p → q is ______.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].