Advertisements
Advertisements
Question
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Solution
p | q | ∼ q | ∼ q ∧ p | ∼ (∼ q ∧ p) | ∼ (∼ q ∧ p) ∧ q |
T | T | F | F | T | T |
T | F | T | T | F | F |
F | T | F | F | T | T |
F | F | T | F | T | F |
The entries in the last column of the above truth table are neither all T nor all F.
∴ ∼ (∼ q ∧ p) ∧ q is a contingency.
APPEARS IN
RELATED QUESTIONS
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Write the dual of the following statements: (p ∨ q) ∧ T
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p ∧ q) (p → r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(p ∨ q) ∧ ∼p] ∧ ∼q
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Prove that the following pair of statement pattern is equivalent.
p ↔ q and (p → q) ∧ (q → p)
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Using the rules of negation, write the negation of the following:
(~p ∧ q) ∧ (~q ∨ ~r)
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Construct the truth table for the following statement pattern.
(~p ∨ q) ∧ (~p ∧ ~q)
Construct the truth table for the following statement pattern.
(p ∧ r) → (p ∨ ~q)
Construct the truth table for the following statement pattern.
(p ∨ r) → ~(q ∧ r)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table, prove the following logical equivalence.
p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
Write the dual of the following.
13 is prime number and India is a democratic country
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
Complete the truth table.
p | q | r | q → r | r → p | (q → r) ˅ (r → p) |
T | T | T | T | `square` | T |
T | T | F | F | `square` | `square` |
T | F | T | T | `square` | T |
T | F | F | T | `square` | `square` |
F | T | T | `square` | F | T |
F | T | F | `square` | T | `square` |
F | F | T | `square` | F | T |
F | F | F | `square` | T | `square` |
The given statement pattern is a `square`
The equivalent form of the statement ~(p → ~ q) is ______.
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
The converse of contrapositive of ∼p → q is ______.
In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.