Advertisements
Advertisements
Question
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Solution
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
p | q | r | q∨r | p∧(q∨r) | p∧q | p∧r | (p∧q)∨(p∧r) |
T | T | T | T | T | T | T | T |
T | T | F | T | T | T | F | T |
T | F | T | T | T | F | T | T |
T | F | F | F | F | F | F | F |
F | T | T | T | F | F | F | F |
F | T | F | T | F | F | F | F |
F | F | T | T | F | F | F | F |
F | F | F | F | F | F | F | F |
In the above truth table, the entries in columns 5 and 8 are identical.
∴ p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
APPEARS IN
RELATED QUESTIONS
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Write the dual of the following:
~(p ∧ q) ≡ ~ p ∨ ~ q
Write the dual statement of the following compound statement.
Radha and Sushmita cannot read Urdu.
Write the negation of the following statement.
Some continuous functions are differentiable.
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
Which of the following is not equivalent to p → q.
Which of the following is not true for any two statements p and q?
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].