हिंदी

What is tautology? What is contradiction? Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.

टिप्पणी लिखिए

उत्तर

  • Tautology:
    A statement pattern having truth value always T, irrespective of the truth values of its component statement is called a tautology.
  • Contradiction:
    A statement pattern having truth value always F, irrespective of the truth values of its component statement is called a contradiction.

Let Statement p tautology. Consider, truth table

p ~ p
T F

i.e., negation of tautology is contradiction.
Let statement of contradiction. Consider, truth table

q ~ q
F T

i.e., negation of contradiction is tautology.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Miscellaneous Exercise 1 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.12 | पृष्ठ ३३

संबंधित प्रश्न

Write the dual of the following statements: (p ∨ q) ∧ T


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Using the truth table, verify

~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


If p → (∼p v q) is false, then the truth values of p and q are respectively


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Which of the following is not equivalent to p → q.


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


The converse of contrapositive of ∼p → q is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×