हिंदी

If P and Q Are True Statements and R and S Are False Statements, Find the Truth Value of the Following : ( P ∧ ∼ R ) ∧ ( ∼ Q ∧ S) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )

योग

उत्तर

Given p is T, q is T, r is F, s is F

( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )

≡ ( T ∧ ∼ F ) ∧ ( ∼ T ∧ F )

≡ ( T ∧ T ) ∧ ( F ∧ F )

≡ T ∧ F

≡ F
∴ The truth value of the given statement is F.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (February) Set 1

संबंधित प्रश्न

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual of the following:

(p ∨ q) ∨ r


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


With proper justification, state the negation of the following.

(p → q) ∧ r


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Construct the truth table for the following statement pattern.

(p ∨ r) → ~(q ∧ r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


The equivalent form of the statement ~(p → ~ q) is ______.


Which of the following is not true for any two statements p and q?


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×