हिंदी

Write the dual of the following. (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

एक पंक्ति में उत्तर

उत्तर

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Miscellaneous Exercise 1 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.18 | पृष्ठ ३३

संबंधित प्रश्न

Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


If p is any statement then (p ∨ ∼p) is a ______.


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


If p → (∼p v q) is false, then the truth values of p and q are respectively


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×