Advertisements
Advertisements
Question
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Solution
p | q | ~p | p∧q | (p∧q)∧~p |
T | T | F | T | F |
T | F | F | F | F |
F | T | T | F | F |
F | F | T | F | F |
All the truth values in the last column are F. Hence, it is a contradiction.
APPEARS IN
RELATED QUESTIONS
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Write the negation of the Following Statement :
∀ y ∈ N, y2 + 3 ≤ 7
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∧ (p → q)] → q
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
If p is any statement then (p ∨ ∼p) is a ______.
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the negation of the following statement.
All the stars are shining if it is night.
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Write the negation of the following statement.
Some continuous functions are differentiable.
With proper justification, state the negation of the following.
(p → q) ∧ r
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
The false statement in the following is ______.
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
Which of the following is not true for any two statements p and q?
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].