हिंदी

Differentiate cot-1(cosx1+sinx) w.r. to x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x

योग

उत्तर

Let y = `cot^-1((cos x)/(1 + sinx))`

= `tan^-1((1 + sinx)/(cos x))`

= `tan^-1[(cos^2(x/2) + sin^2(x/2) + 2sin(x/2)cos(x/2))/(cos^2(x/2) - sin^2(x/2))]`

= `tan^-1[{cos(x/2) + sin(x/2)}^2/([cos(x/2) + sin(x/2)][cos(x/2) - sin(x/2)])]`

= `tan^-1[(cos(x/2) + sin(x/2))/(cos(x/2) - sin(x/2))]`

= `tan^-1[(1 + tan(x/2))/(1 - tan(x/2))]`

= `tan^-1[(tan(pi/4) + tan(pi/2))/(1 - tan(pi/4)tan(x/2))]`

= `tan^-1[tan(pi/4 + x/2)]`

∴ y = `pi/4 + x/2`

Differentiating w. r. t. x, we get

`("d"y)/("d"x) = "d"/("d"x)(pi/4 + x/2) = 0 + 1/2 = 1/2`

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - Short Answers II

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x: `log[tan(x/2)]`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate y = etanx w.r. to x


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


Derivative of (tanx)4 is ______ 


y = {x(x - 3)}2 increases for all values of x lying in the interval.


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×