Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
उत्तर
Let y = (log x)x – (cos x)cotx
Put u = (log x)x and v = (cos x)cotx
Then y = u – v
∴ `"dy"/"dx" = "du"/"dx" - "dv"/"dx"` ...(1)
Take u = (log x)x
∴ log u = log(log x)x = x.log(log x)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[x.log(logx)]`
= `x"d"/"dx"[log(logx)] + log(logx)."d"/"dx"(x)`
= `x xx 1/logx."d"/"dx"(logx) + log(logx) xx 1`
= `x xx 1/logx xx 1/x + log(logx)`
∴ `"du"/"dx" = u[1/logx + log(logx)]`
= `(logx)^x[1/logx + log(logx)]` ...(2)
Also v = (cos x)cotx
∴ log v = log(cos x)cotx = (cot x).(log cos x)
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/dx"[(cotx).log(cosx)]`
= `(cotx)."d"/"dx"(log cosx) + (log cosx)."d"/"dx"(cotx)`
= `cotx xx 1/cosx."d"/"dx"(cosx) + (logcosx)(-"cosec"^2x)`
= `cotx xx 1/cosx xx (-sinx) - ("cosec"^2x)(logcosx)`
∴ `"dv"/"dx" = v[1/tanx xx (-tanx) - ("cosec"^2x)(logcosx)]`
= –(cos x)cotx[1 + (cosec2x)(log cos x)] ....(3)
From (1), (2) and (3), we get
∴ `"dy"/"dx" = (logx)^x[1/logx + log(logx)] + (cosx)^cotx[1 + ("cosec"^2x)(logcosx)]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
If f(x) is odd and differentiable, then f′(x) is
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.