Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
उत्तर
Let y = `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Then log y = `log[x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
= `log(x^2 + 3)^(3/2) + logsin^3 2x + log2^(x^2)`
= `(3)/(2)log(x^2 + 3) + 3log(sin2x) + x^2.log2`
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = (3)/(2)"d"/"dx"[log(x^2 + 3)] + 3"d"/"dx"[log(sin2x)] + log2."d"/"dx"(x^2)`
= `(3)/(2) xx (1)/(x^2 + 3)."d"/"dx"(x^2 + 3) + 3 xx (1)/(sin2x)."d"/"dx"(sin2x) + log2 xx 2x`
= `(3)/(2(x^2 + 3)).(2x + 0) + (3)/(sin2x) xx cos2x."d"/"dx"(2x) + 2xlog2`
= `(6x)/(2(x^2 + 3)) + 3cot2x xx 2 + 2xlog2`
∴ `"dy"/"dx" = y[(3x)/(x^2 + 3) + 6cot2x + 2xlog2]`
= `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)[(3x)/(x^2 + 3) + 6cot2x + 2xlog2]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
Derivative of (tanx)4 is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.