Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
उत्तर
Using `log(a/b)` = log a − log b
log ab = b log a
`y = log(sqrt(1 + cos ((5x)/2))) - log(sqrt(1 - cos ((5x)/2)))`
`y = log[1 + cos ((5x)/2)]^(1/2) - log[1 - cos((5x)/2)]^(1/2)`
`y = (1)/(2)log[1 + cos((5x)/2)] - (1)/(2)log[(1 - cos((5x)/2)]`
Differentiating w.r.t. x
`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × "d"/"dx"(1 + cos (5x)/2) - 1/2 × 1/(1 - cos((5x)/2)) × "d"/"dx"(1 - cos (5x)/(2))`
`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × [0 - sin ((5x)/2)] . 5/2 "d"/"dx" x - 1/2 × 1/(1 - cos((5x)/2)) × [0 + sin ((5x)/2)] . 5/2 "d"/"dx" x`
`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × - sin ((5x)/2) . 5/2 - 1/2 × 1/(1 - cos((5x)/2)) × sin ((5x)/2) . 5/2`
`"dy"/"dx" = [- 5sin((5x)/2)]/[4(1 + cos((5x)/2))] - [5sin((5x)/2)]/[4(1 - cos((5x)/2))]`
`"dy"/"dx" = [- 5sin((5x)/2)]/4. [1/(1 + cos((5x)/(2))) + 1/(1 - cos((5x)/(2)))]`
`"dy"/"dx" = [- 5sin((5x)/2)]/4. [(1 - cos ((5x)/2) + 1 + cos ((5x)/2)]/(1^2 - cos^2 ((5x)/2))]`
`"dy"/"dx" = [- 5sin((5x)/2)]/4. 2/(sin^2((5x)/2))` ...[ ∵ 1 – cos2x = sin2x]
`"dy"/"dx" = - 5/2 . 1/(sin((5x)/2))`
`"dy"/"dx" = - 5/2 . "cosec" ((5x)/2)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate y = etanx w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.