हिंदी

Differentiate the following w.r.t. x: xxx+exx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`

योग

उत्तर

Let y = `x^(x^x) + e^(x^x)`

Put u = `x^(x^x) and v = e^(x^(x)`

Then y = u + v

∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"`     ...(1)

Take u = `x^(x^(x)`

∴ log u = `logx^(x^(x)) = x^x*logx`

Differentiating both sides w.r.t. x, we get

`1/u*"du"/"dx" = "d"/"dx"(x^x*logx)`

= `x^x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x^x)`

= `x^x xx 1/x + (logx)*"d"/"dx"(x^x)`      ...(2)

To find `"d"/"dx"(x^x)`

Let ω = xx

Then log ω = xlogx

Differentiating both sides w.r.t. x, we get

`1/omega*"dω"/"dx" = "d"/"dx"(xlogx)`

= `x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x)`

= `x xx (1)/x + (logx) xx 1`

∴ `"dω"/"dx" = omega(1 + logx)`

∴ `"d"/"dx"(x^x) = x^x(1 + logx)`      ...(3)

∴ from (2),

`1/u*"du"/"dx" = x^x xx (1)/x + (logx)*x^x(1 + logx)`

∴ `"du"/"dx" = y[x^x xx 1/x + (logx)*x^x(1 + logx)]`

= `x^(x^x)*x^x[1/x + (logx)*(1 + logx)]`

= `x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)]`      ...(4)

Also, v = `e^(x^(x)`

∴ `"dv"/"dx" = "d"/"dx"(e^(x^x))`

= `e^(x^(x))*"d"/"dx"(e^(x^x))`

= `e^(x^(x))*x^x(1 + logx)`      ...(5) [By (3)] 

From (1), (4) and (5), we get              

`"dy"/"dx" = x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)] + e^(x^x)*x^x(1 + logx)`

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×