Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
उत्तर
Let y = `x^(x^x) + e^(x^x)`
Put u = `x^(x^x) and v = e^(x^(x)`
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ...(1)
Take u = `x^(x^(x)`
∴ log u = `logx^(x^(x)) = x^x*logx`
Differentiating both sides w.r.t. x, we get
`1/u*"du"/"dx" = "d"/"dx"(x^x*logx)`
= `x^x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x^x)`
= `x^x xx 1/x + (logx)*"d"/"dx"(x^x)` ...(2)
To find `"d"/"dx"(x^x)`
Let ω = xx
Then log ω = xlogx
Differentiating both sides w.r.t. x, we get
`1/omega*"dω"/"dx" = "d"/"dx"(xlogx)`
= `x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x)`
= `x xx (1)/x + (logx) xx 1`
∴ `"dω"/"dx" = omega(1 + logx)`
∴ `"d"/"dx"(x^x) = x^x(1 + logx)` ...(3)
∴ from (2),
`1/u*"du"/"dx" = x^x xx (1)/x + (logx)*x^x(1 + logx)`
∴ `"du"/"dx" = y[x^x xx 1/x + (logx)*x^x(1 + logx)]`
= `x^(x^x)*x^x[1/x + (logx)*(1 + logx)]`
= `x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)]` ...(4)
Also, v = `e^(x^(x)`
∴ `"dv"/"dx" = "d"/"dx"(e^(x^x))`
= `e^(x^(x))*"d"/"dx"(e^(x^x))`
= `e^(x^(x))*x^x(1 + logx)` ...(5) [By (3)]
From (1), (4) and (5), we get
`"dy"/"dx" = x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)] + e^(x^x)*x^x(1 + logx)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______