Advertisements
Advertisements
प्रश्न
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
उत्तर
`sec((x^5 + y^5)/(x^5 - y^5))` = a2
∴ `(x^5 + y^5)/(x^5 - y^5) = sec^-1(a^2)` = k
∴ x5 + y5 = kx5 – ky5
∴ (1 + k)y5 = (k – 1)x5
∴ `y^5/x^5 = (k - 1)/(k + 1)`
∴ `y/x = ((k - 1)/(k + 1))^(1/5)`, a constant
Differentiating both sides w.r.t. x, we get
`"d"/"dx"(y/x)` = 0
∴ `(x."dy"/"dx" - y."d"/"dx"(x))/(x^2)` = 0
∴ `x"dy"/"dx" - y xx 1` = 0
∴ `"dy"/"dx" = y/x.`
Alternative Method :
`sec((x^5 + y^5)/(x^5 - y^5))` = a2
∴ `(x^5 + y^5)/(x^5 - y^5)` = sec–1a2 = k ...(Say)
∴ x5 + y5 = kx5 – ky5
∴ (1 + k)y5 = (k – 1)x5
∴ `y^5/x^5 = (k - 1)/(k + 1)` ...(1)
∴ y5 = k'x5, where k' = `(k - 1)/(k + 1)`
Differentiating both sides w.r.t. x, we get
`5y^4"dy"/"dx"` = k' x 5x4
∴ `"dy"/"dx" = k'.x^4/y^4`
∴ `"dy"/"dx" = ((k - 1)/(k + 1)).x^4/y^4`
= `y^5/x^5 xx x^4/y^4` ...[By (1)]
∴ `"dy"/"dx" = y/x`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
If y = log (sec x + tan x), find `dy/dx`.