हिंदी

Differentiate the following w.r.t.x: log[sec(ex2)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`

योग

उत्तर

Let y = `log[sec (e^(x^2))]`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"log[sec (e^(x^2))]`

= `(1)/(sec (e^(x^2))). "d"/"dx"[sec (e^(x^2))]`

= `(1)/(sec (e^(x^2))).sec(e^(x^2))tan(e^(x^2))."d"/"dx"(e^(x^2))`

= `tan(e^(x^2)).e^(x^2)."d"/"dx"(x^2)`

= `tan(e^(x^2)).e^(x^2).2x`
= `2x.e^(x^2)tan(e^(x^2))`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.1 | Q 2.15 | पृष्ठ १२

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Differentiate y = etanx w.r. to x


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


Derivative of (tanx)4 is ______ 


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×