मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t.x: log[sec(ex2)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`

बेरीज

उत्तर

Let y = `log[sec (e^(x^2))]`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"log[sec (e^(x^2))]`

= `(1)/(sec (e^(x^2))). "d"/"dx"[sec (e^(x^2))]`

= `(1)/(sec (e^(x^2))).sec(e^(x^2))tan(e^(x^2))."d"/"dx"(e^(x^2))`

= `tan(e^(x^2)).e^(x^2)."d"/"dx"(x^2)`

= `tan(e^(x^2)).e^(x^2).2x`
= `2x.e^(x^2)tan(e^(x^2))`.

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate y = `sqrt(x^2 + 5)` w.r. to x


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If f(x) is odd and differentiable, then f′(x) is


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×